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DBMS Reimplements a lot of OS Features

e File/Storage caching
e Snapshotting
e User-space task scheduling and 1/O scheduling
« But DBMS, being unprivileged, does not have powers that OS has
o Page Table, MMU
« Hardware interrupts
o TLB flush instructions
o Only exposed through slow POSIX interfaces (mmap, madvise, signals)
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o Hyperikemper et al, icoemy uses fork to run a OLAP queries on a OLTP database
« Hyper gave up on fork because fork is slow and hard to control

o fork is blocking and requires threads to be paused to get a consistent
snapshot Redis p100 Query Latency during Checkpointing

N

o

o
|

100 -

p100.0 Latency (ms)

0-1 I I I I I
1 2 4 8 16 32

Redis Memory Footprint (GiB



Co-Design Paradigms for this Problem

DB

Linux Module

Hardware

Customized Linux Kernel
- Security
- Maintainability



Co-Design Paradigms for this Problem

DB DB
" " m
Linux Module Linux ZJ [P Prok
Hardware Hardware
Customized Linux Kernel Kernel Bypass
- Security - No direct control on
- Maintainability MMU & Page Table

- Limited Design Space



Co-Design Paradigms for this Problem

DB DB
DB on

. . =7 Unikernel

Linux Module Linux E/F)DPDK
Hardware Hardware Hypervisor/Hardware
Customized Linux Kernel Kernel Bypass DB-Unikernel
- Security - No direct control on - All-or-nothing
- Maintainability MMU & Page Table - Throwing
- Limited Design Space baby(ecosystem) out

with bathwater(POSIX)



How to allow DBMS complete freedom
to specialize subsystems while
minimizing impact on security, eco-
system, and compatibility ?
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Making DB Process Privileged with Virtualization

VM Subsys.

Privileged DB Process

Scheduling
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Guest | Virtualized Process

Kernel Space

¥ Syscall as hypercall

Host Kernel|Hypervisorm

Hardware

Privileged Kernel Bypass

Selectively specialize security-
sensitive subsystems for DBMS
to avoid POSIX

Hypervisor-based isolation for
security

Reuse host kernel functionality
and its ecosystem

Not throwing the baby out with
bathwater



Privileged Kernel-Bypass vs. Kernel-Bypass for DBMS

Kernel Bypass Privileged Kernel Bypass

DBMS runs in User Space Guest Kernel Space

Virtual Memory/Scheduler/Interrupt

Specializes Network/Storage /Network/Storage



This paper

« Instantaneous snapshotting. €
o ‘“Perfect” virtual-memory-assisted buffer manager [see paper]
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Linux fork Bottleneck Analysis

 Linux kernel maintains a per-page reference count for safe page
reclamation - a fundamental design decision to support shared-memory,
page cache, memory-mapped files ---
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Linux fork Bottleneck Analysis

 Linux kernel maintains a per-page reference count for safe page
reclamation - a fundamental design decision to support shared-memory,
page cache, memory-mapped files ---

Virtual Memory
copy  Page Table

/ ~90% CPU cycles due
Update per-page

; to cache misses and
/re erence count | random accesses

Physical Memory P1 ‘/PZ P3| P4

Per-page Ref. Count | 2 | 2 1 2
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Fast Snapshotting with Privileged Kernel Bypass

« We can make many simplifying assumptions

e Specialize a simple VM/snapshotting system in the privileged DB process
« No reference counting for physical pages - DB is the only user
 No support for shared-memory, page cache, memory-mapped files:-
« No nested snapshot - Redis/KeyDB/Hyper use cases

« Challenge: how to safely reclaim physical pages without reference count?

13



Safely Reclaiming Physical Pages with Timestamp
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« A page is reclaimed when there are no references from any page tables.
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Safely Reclaiming Physical Pages with Timestamp

« Lifecycle of page/snapshot tracked with timestamps - akin to epoch-based reclamation
« A page is reclaimed when there are no references from any page tables.

« No overlap between the lifetime of active page tables and physical page
« Pages are periodically examined for garbage collection in batches
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Instant Snapshotting via Pre-Creation

e Asynchronously maintain a set of ready-to-go snapshot page tables

« Completely hide the copy latency, making the snapshot creation appear

instant
Snapshot Request

Snapshot
Page Table

Synchronize
Changes

Ready
Snapshot
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Implementation

The snapshot mechanism is implemented (~1K LOC) in a guest kernel called

libdbos on top of Dune hypervisor

Physical memory backing and system call proxy are done by the hypervisor

Linux virtual memory subsystem 110K LOC

Evaluated on Redis by replacing fork with this snapshot mechanism

Checkpoint process runs in a thread

Privileged DB Process

Redis

libdbos

Host Kernel Space

Proxy syscall with hypercall

Dune Hypervisor

Linux Kernel

16




Microbenchmark

o ~20x reduction in snapshot latency
« Snapshot 128GB memory in 40ms without parallelization

« Async copy completely hides fork latency if snapshot frequency > page

table copy time

—8— Linux Fork Instant Epoch-Snhapshot
—— Epoch Snapshot
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Tail Latency of Redis SET Query during Checkpoint
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Cost of Virtualization
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Numerous Possibilities

« Virtual Memory
« “Perfect” virtual-memory-assisted buffer manager
« Faster memory-rewiring for DBMS query processing and indexing
« Faster memory allocation
« Scheduling
« Robust lightweight task scheduling with preemption
« Transaction-priority-aware lightweight task scheduling
« Hypervisor Interface

« DBMS-assisted memory ballooning
20



Compatible with Modern Linux Data-Path Interfaces

Privileged DB Process
VM Subsys. | [ Scheduling

: Virtualized Hardware ! ring I — /@) DPDK

interface

Host Kernel eBPFXDP |/ Hypervisor

Hardware



Conclusions

e With privileged kernel-bypass, we can address the mismatch
problem while

e Mminimizing impact on kernel security and stability
e providing complete design freedom to DBMS

e preserving ecosystem

e DBMS deserves to be to privileged!
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