Practical DB-OS Co-Design with
Privileged Kernel-Bypass

Xinjing Zhou, Viktor Leis, Jinming Hu, Xiangyao Yu, Michael Stonebraker

MIT CSAIL, TUM, DolphinDB Inc, UW-Madison, MIT CSAIL

l - Massachusetts
Institute of
Technology

DB-0S Interface Mismatch

Performance
Hardware control

Security
Multiplexes hardware
Resource efficiency

DBMS Reimplements a lot of OS Features

DBMS Reimplements a lot of OS Features

e File/Storage caching

DBMS Reimplements a lot of OS Features

e File/Storage caching
e Snapshotting

DBMS Reimplements a lot of OS Features

e File/Storage caching
e Snapshotting
e User-space task scheduling and 1/O scheduling

DBMS Reimplements a lot of OS Features

e File/Storage caching
e Snapshotting
e User-space task scheduling and 1/O scheduling
« But DBMS, being unprivileged, does not have powers that OS has
o Page Table, MMU
« Hardware interrupts
o TLB flush instructions
o Only exposed through slow POSIX interfaces (mmap, madvise, signals)

Notes on Data Base Operating Systems

Author: Q Jim Gray Authors Info & Claims
Operating Systems, An Advanced Course « January 1978 « Pages 393-481
Published: 01 January 1978 Publication History

9y 579 2 0

a

Operating system support for database management

Author: e Michael Stonebraker Authors Info & Claims

Communications of the ACM, Volume 24, Issue 7 « pp 412-418 « https://doi.org/10.1145/358699.358703

Notes on Data Base Operating Systems

Author: Q Jim Gray Authors Info & Claims
Operating Systems, An Advanced Course « January 1978 « Pages 393-481
Published: 01 January 1978 Publication History

9y 579 2 0

a

COD: Database / Operating System Co-Design

Jana Giceva, Tudor-loan Salomie, Adrian Schiipbach
i Gustavo Alonso, Timothy Roscoe
Operatlng SVStem SUppOI’t for database r Systems Group, Department of Computer Science
ETH Zurich, Switzerland
www.systems.ethz.ch
Author: e Michael Stonebraker Authors Info & Claims

Communications of the ACM, Volume 24, Issue 7 « pp 412-418 « https://doi.org/10.1145/358699.358703

Notes on Data Base Operating Systems

Author: @ Jim Gray Authors Info & Claims
Operating Systems, An Advanced Course « January 1978 « Pages 393-481

Published: 01 January 1978 Publication History

99 579 M0 2 ”

Async-fork: Mitigating Query Latency Spikes Incurred by the
Fork-based Snapshot Mechanism from the OS Level

Pu Pang Gang Dc . : ‘
Shanghai Jiao Tong University Alibaba Gi COD- Database / Operatlng System CO-DESIQI‘I
Alibaba Group denggang.dg@alib
avengerispp@sjtu.edu.cn Jana Giceva, Tudor-loan Salomie, Adrian Schiipbach
i Gustavo Alonso, Timothy Roscoe
Operatlng sVStem SUppOl’t for database r Systems Group, Department of Cc¥mputer Science

ETH Zurich, Switzerland
www.systems.ethz.ch
Author: e Michael Stonebraker Authors Info & Claims

Communications of the ACM, Volume 24, Issue 7 « pp 412-418 « https://doi.org/10.1145/358699.358703

Notes on Data Base Operating Systems

Author: G:) Jim Gray Authors Info & Claims
Operating Systems, An Advanced Course « January 1978 « Pages 393-481

Published: 01 January 1978 Publication History

99 579 M 0 a 79

Async-fork: Mitigating Query Latency Spikes Incurred by the
Fork-based Snapshot Mechanism from the OS Level

Pu Pang Gang Dc . : ‘
Shanghai Jiao Tong University Alibatac, COD: Database / Operating System Co-Design
Alibaba Group denggang.dg@alib
avengerispp@sjtu.edu.cn Jana Giceva, Tudor-loan Salomie, Adrian Schiipbach
i Gustavo Alonso, Timothy Roscoe
Operatlng SVStem SUppOl’t for database r Systems Group, Department of Cc¥mputer Science

ETH Zurich, Switzerland
www.systems.ethz.ch
Author: Q Michael Stonebraker Authors Info & Claims

Communications of the ACM, Volume 24, Issue 7 « pp 412-418 « https://doi.org/10.1145/358699.358703

Notes on Data Base Operating Systems

Are You Sure You Want to Use MMAP in
Your Database Management System?

Author: G:) Jim Gray A

Operating Systems, An Ac

Published: 01 January 1¢

Andrew Crotty Viktor Leis Andy Pavlo

Carnegie Mellon University ; Friedrich-Alexander-Universitat Carnegie Mellon University

' 4

yy 579 0

Async-fork: Mitigating Query Latency Spikes Incurred by the
Fork-based Snapshot Mechanism from the OS Level

Pu Pang Gang Dc . : ‘
Shanghai Jiao Tong University Alibatac, COD: Database / Operating System Co-Design
Alibaba Group denggang.dg@alib
avengerispp@sjtu.edu.cn Jana Giceva, Tudor-loan Salomie, Adrian Schiipbach

Operating system support for
P gsy PP Virtual-Memory Assisted Buffer Management

Author: 9 Michael Stonebraker Authors Info & Claims Preprint acceptEd for pUblication at SIGMOD 2023

Viktor Leis Adnan Alhomssi Tobias Ziegler
Communications of the ACM, Volume 24, Issue 7 « pp 412-418 Technische Universitat Miinchen Friedrich-Alexander-Universitét Technische Universitit Darmstadt
leis@in.tum.de Erlangen-Niirnberg tobias.ziegler@cs.tu-darmstadt.de
adnan.alhomssi@fau.de

Notes on Data Base Operating

Yannick Loeck Christian Dietrich
A Technische Universitit Hamburg Technische Universitdt Hamburg
Author: G:) Jim Gray A re yannick.loeck@tuhh.de christian.dietrich@tuhh.de

Your Database Management System?

Operating Systems, An Ac

Published: 01 January 1¢

99 579 70 @ Andrew Crotty, \\ Viktor Leis Andy Pavlo

Carnegie Mellon University Friedrich-Alexander-Universitat Carnegie Mellon University

' 4

Async-fork: Mitigatil
Fork-based Snaj

Pu Pang
Shanghai Jiao Tong University
Alibaba Group
avengerispp@sjtu.edu.cn

Operating system support

TYPES OF DATABASE PAPER

ML is all you need to

Actually, reinforcement
learning is the kind of

MY COLLEAGUE 15 (Fine

Author: e Michael Stonebraker Authors Info & Clai /

Communications of the ACM, Volume 24, Issue 7 « pp 4

Notes on Data Base Oper

Author: G.) Jim Gray A
Operating Systems, An Ac
Published: 01 January 1¢

yy 579 0

Andrew C

Carnegie Mel

build a DBMS WRONG AND I (AN as is)
—— ML you need for FINALLY PROVE IT
=== building a DBMS, like —_—— =
= for real this time, LOL ==
— ~_ -
THE Operating SYSTEM WE FIGURED OUT HOW WHAT ARE. NVM/SSD
IS AT IT AGAIN N TO Optimize Really Complex DOING DOWN THERE.
— SQL Queries | 50 EMAIL ———
= S IF YOU NEED SOME B
< j‘z‘ — - Lo =
THIS TASK I HAD To DO HEY, AT LEAST WE CHECK OUT THIS WEIRD
ANYWAY TURNED OUT SHOWED THAT THIS Trick ONE OF US SAW
T0 BE HARD ENOUGH METHOD CAN PRODUCE WHILE Using a KV Store
FOR ITS OWN PAPER RESULTS! THAT'S NOTF‘ —_——
—==—— (Fine| | NOTHING, RIGHT? ;s"i‘:‘; =
= gals) ——

y the
I

1g System Co-Design

mie, Adrian Schiipbach

Management
MOD 2023

Tobias Ziegler
Technische Universitat Darmstadt
tobias.ziegler@cs.tu-darmstadt.de

jan Dietrich
niversitdt Hamburg
ietrich@tuhh.de

t System?

Andy Pavlo

Carnegie Mellon University

Case Study: Virtual Memory Snapshotting

Case Study: Virtual Memory Snapshotting

e Redis uses fork to save process memory as checkpoints for persistence

Case Study: Virtual Memory Snapshotting

e Redis uses fork to save process memory as checkpoints for persistence
o Hyperikemper et al, icoemy uses fork to run a OLAP queries on a OLTP database
« Hyper gave up on fork because fork is slow and hard to control

Case Study: Virtual Memory Snapshotting

e Redis uses fork to save process memory as checkpoints for persistence
o Hyperikemper et al, icoemy uses fork to run a OLAP queries on a OLTP database
« Hyper gave up on fork because fork is slow and hard to control

o fork is blocking and requires threads to be paused to get a consistent
snapshot

Case Study: Virtual Memory Snapshotting

e Redis uses fork to save process memory as checkpoints for persistence

o Hyperikemper et al, icoemy uses fork to run a OLAP queries on a OLTP database
« Hyper gave up on fork because fork is slow and hard to control

o fork is blocking and requires threads to be paused to get a consistent
snapshot Redis p100 Query Latency during Checkpointing

N

o

o
|

100 -

p100.0 Latency (ms)

0-1 I I I I I
1 2 4 8 16 32

Redis Memory Footprint (GiB

Co-Design Paradigms for this Problem

DB

Linux Module

Hardware

Customized Linux Kernel
- Security
- Maintainability

Co-Design Paradigms for this Problem

DB DB
" " m
Linux Module Linux ZJ [P Prok
Hardware Hardware
Customized Linux Kernel Kernel Bypass
- Security - No direct control on
- Maintainability MMU & Page Table

- Limited Design Space

Co-Design Paradigms for this Problem

DB DB
DB on

. . =7 Unikernel

Linux Module Linux E/F)DPDK
Hardware Hardware Hypervisor/Hardware
Customized Linux Kernel Kernel Bypass DB-Unikernel
- Security - No direct control on - All-or-nothing
- Maintainability MMU & Page Table - Throwing
- Limited Design Space baby(ecosystem) out

with bathwater(POSIX)

How to allow DBMS complete freedom
to specialize subsystems while
minimizing impact on security, eco-
system, and compatibility ?

Making DB Process Privileged with Virtualization

Guest | Virtualized Process

Kernel Space

Privileged DB Process
VM Subsys. | [Scheduling | | -

¥ Syscall as hypercall

Host Kernel|Hypervisorm

Hardware

Privileged Kernel Bypass

[1] Belay, Adam, et al. "Dune: Safe user-level access to privileged {CPU} features.” OSDI 12. 2012.

Making DB Process Privileged with Virtualization

Guest
Kernel Space

Privileged DB Process
VM Subsys. | [Scheduling | | -

Host Kernel|Hypervisorm

Hardware

Privileged Kernel Bypass

Virtualized Process

o Selectively specialize security-
sensitive subsystems for DBMS
to avoid POSIX

¥ Syscall as hypercall

[1] Belay, Adam, et al. "Dune: Safe user-level access to privileged {CPU} features.” OSDI 12. 2012.

Making DB Process Privileged with Virtualization

Guest
Kernel Space

Privileged DB Process
VM Subsys. | [Scheduling | | -

A

Host Kernel

Hypervisorm

Hardware

Privileged Kernel Bypass

¥ Syscall as hypercall

Virtualized Process

o Selectively specialize security-
sensitive subsystems for DBMS
to avoid POSIX

Hypervisor-based isolation for
security

Making DB Process Privileged with Virtualization

VM Subsys. | [Scheduling

Privileged DB Process

Guest | Virtualized Process

Kernel Space

- Syscall as hypercall

Host Kernel|Hypervisorm

Hardware

Privileged Kernel Bypass

Selectively specialize security-
sensitive subsystems for DBMS
to avoid POSIX

Hypervisor-based isolation for
security

Reuse host kernel functionality
and its ecosystem

Making DB Process Privileged with Virtualization

VM Subsys.

Privileged DB Process

Scheduling

A

Guest | Virtualized Process

Kernel Space

¥ Syscall as hypercall

Host Kernel|Hypervisorm

Hardware

Privileged Kernel Bypass

Selectively specialize security-
sensitive subsystems for DBMS
to avoid POSIX

Hypervisor-based isolation for
security

Reuse host kernel functionality
and its ecosystem

Not throwing the baby out with
bathwater

Privileged Kernel-Bypass vs. Kernel-Bypass for DBMS

Kernel Bypass Privileged Kernel Bypass

DBMS runs in User Space Guest Kernel Space

Virtual Memory/Scheduler/Interrupt

Specializes Network/Storage /Network/Storage

This paper

« Instantaneous snapshotting. €
o ‘“Perfect” virtual-memory-assisted buffer manager [see paper]

10

Linux fork Bottleneck Analysis

11

Linux fork Bottleneck Analysis

) |

wn

c 800 -

o 600 —

C

g

o 400 -

: Just copy page table
L 200 - /

L

0 -7 | | I | l I I
1 2 4 8 16 32 64 128

Memory Footprint (GiB)

Linux fork Bottleneck Analysis

 Linux kernel maintains a per-page reference count for safe page
reclamation - a fundamental design decision to support shared-memory,
page cache, memory-mapped files ---

Virtual Memory

Physical Memory Pl | P2 | P3| P4

Per-page Ref. Count | 1 1 1 1

12

Linux fork Bottleneck Analysis

 Linux kernel maintains a per-page reference count for safe page
reclamation - a fundamental design decision to support shared-memory,
page cache, memory-mapped files ---

Virtual Memory

copy Page Table

~

Physical Memory P1 ‘/PZ P3| P4

Per-page Ref. Count | 1 1 1 1

12

Linux fork Bottleneck Analysis

 Linux kernel maintains a per-page reference count for safe page
reclamation - a fundamental design decision to support shared-memory,
page cache, memory-mapped files ---

Virtual Memory

copy Page Table

/Update per-page

reference count

-~

Physical Memory P1 ‘/PZ P3| P4

Per-page Ref. Count | 1 1 1 1

12

Linux fork Bottleneck Analysis

 Linux kernel maintains a per-page reference count for safe page
reclamation - a fundamental design decision to support shared-memory,
page cache, memory-mapped files ---

Virtual Memory

copy Page Table

/Update per-page

reference count

-~

Physical Memory P1 ‘/PZ P3| P4

Per-page Ref. Count | 1 1 1 2

12

Linux fork Bottleneck Analysis

 Linux kernel maintains a per-page reference count for safe page
reclamation - a fundamental design decision to support shared-memory,
page cache, memory-mapped files ---

Virtual Memory

copy Page Table

/Update per-page

reference count

-~

Physical Memory P1 ‘/PZ P3| P4

Per-page Ref. Count | 2 1 1 2

12

Linux fork Bottleneck Analysis

 Linux kernel maintains a per-page reference count for safe page
reclamation - a fundamental design decision to support shared-memory,
page cache, memory-mapped files ---

Virtual Memory

copy Page Table

/Update per-page

reference count

-~

Physical Memory P1 ‘/PZ P3| P4

Per-page Ref.Count | 2 | 2 1 2

12

Linux fork Bottleneck Analysis

 Linux kernel maintains a per-page reference count for safe page
reclamation - a fundamental design decision to support shared-memory,
page cache, memory-mapped files ---

Virtual Memory
copy Page Table

/ ~90% CPU cycles due
Update per-page

; to cache misses and
/re erence count | random accesses

Physical Memory P1 ‘/PZ P3| P4

Per-page Ref. Count | 2 | 2 1 2

12

Fast Snapshotting with Privileged Kernel Bypass

« We can make many simplifying assumptions

e Specialize a simple VM/snapshotting system in the privileged DB process
« No reference counting for physical pages - DB is the only user
 No support for shared-memory, page cache, memory-mapped files:-
« No nested snapshot - Redis/KeyDB/Hyper use cases

« Challenge: how to safely reclaim physical pages without reference count?

13

Safely Reclaiming Physical Pages with Timestamp

« Lifecycle of page/snapshot tracked with timestamps - akin to epoch-based reclamation
« A page is reclaimed when there are no references from any page tables.

« No overlap between the lifetime of active page tables and physical page
« Pages are periodically examined for garbage collection in batches

2 4 5 9 10 17 20

(- B Time /< 14

Safely Reclaiming Physical Pages with Timestamp

« Lifecycle of page/snapshot tracked with timestamps - akin to epoch-based reclamation
« A page is reclaimed when there are no references from any page tables.

« No overlap between the lifetime of active page tables and physical page
« Pages are periodically examined for garbage collection in batches

Y

Physical Page P

2 4 5 9 10 17 20

(- B Time /< 14

Safely Reclaiming Physical Pages with Timestamp

« Lifecycle of page/snapshot tracked with timestamps - akin to epoch-based reclamation
« A page is reclaimed when there are no references from any page tables.

« No overlap between the lifetime of active page tables and physical page
« Pages are periodically examined for garbage collection in batches

S1 Page Table

S2

v v VY

Physical Page P

2 4 5 9 10 17 20

(- B Time /< 14

Safely Reclaiming Physical Pages with Timestamp

« Lifecycle of page/snapshot tracked with timestamps - akin to epoch-based reclamation
« A page is reclaimed when there are no references from any page tables.

« No overlap between the lifetime of active page tables and physical page
« Pages are periodically examined for garbage collection in batches

Y

S2

v Vv

’;‘51 Page Table

Y

Physical Page P

4 5

9 10 17 20

(- B Time /< 14

Safely Reclaiming Physical Pages with Timestamp

« Lifecycle of page/snapshot tracked with timestamps - akin to epoch-based reclamation
« A page is reclaimed when there are no references from any page tables.

« No overlap between the lifetime of active page tables and physical page
« Pages are periodically examined for garbage collection in batches

’;‘51 Page Table

S2

v LA v

Physical Page P Grace Period

2 4 5 9 10 17 20

(- B Time /< 14

Safely Reclaiming Physical Pages with Timestamp

« Lifecycle of page/snapshot tracked with timestamps - akin to epoch-based reclamation
« A page is reclaimed when there are no references from any page tables.

« No overlap between the lifetime of active page tables and physical page
« Pages are periodically examined for garbage collection in batches

Y

S2

v Vv

’;‘51 Page Table

P is unlinked.

Y

Physical Page P

Grace Period

4 5

9 10 17 20

(- B Time /< 14

Safely Reclaiming Physical Pages with Timestamp

« Lifecycle of page/snapshot tracked with timestamps - akin to epoch-based reclamation
« A page is reclaimed when there are no references from any page tables.

« No overlap between the lifetime of active page tables and physical page
« Pages are periodically examined for garbage collection in batches

’;‘51 Page Table

S2

- P is unlinked.

Physical Page P Grace Period P is reclaimed.

2 4 5 9 10 17 20

(- B Time /< 14

Instant Snapshotting via Pre-Creation

e Asynchronously maintain a set of ready-to-go snapshot page tables

« Completely hide the copy latency, making the snapshot creation appear

instant
Snapshot Request

Synchronize

, Changes
Snapshot
Page Table

15

Instant Snapshotting via Pre-Creation

e Asynchronously maintain a set of ready-to-go snapshot page tables

« Completely hide the copy latency, making the snapshot creation appear

instant
Snapshot Request

Snapshot
Page Table

Synchronize
Changes

Ready
Snapshot

15

Implementation

The snapshot mechanism is implemented (~1K LOC) in a guest kernel called

libdbos on top of Dune hypervisor

Physical memory backing and system call proxy are done by the hypervisor

Linux virtual memory subsystem 110K LOC

Evaluated on Redis by replacing fork with this snapshot mechanism

Checkpoint process runs in a thread

Privileged DB Process

Redis

libdbos

Host Kernel Space

Proxy syscall with hypercall

Dune Hypervisor

Linux Kernel

16

Microbenchmark

o ~20x reduction in snapshot latency
« Snapshot 128GB memory in 40ms without parallelization

« Async copy completely hides fork latency if snapshot frequency > page

table copy time

—8— Linux Fork Instant Epoch-Snhapshot
—— Epoch Snapshot

1000 =
100 =

13

Fork Latency (ms)

) | | | | | |
4 8 16 32 64 128

Memory Footprint (GiB)

17

Tail Latency of Redis SET Query during Checkpoint

=@~ Instant Epoch-Snapshot == Linux Fork On-Demand-Fork
E
— 200 -
>
@)
C
Q
IS
— 100 -
©
o
2 k“-\"/'/
—
o 0 - @ o @ o @
| | | | [|

1 2 4 8 16 32
Redis Memory Footprint (GiB

18

Cost of Virtualization

EZZ Linux
- B8 libdbos
»\666* 36

_I

\
ry-¢2
emp N~ p(ead co

=
o
ul

CPU cycles

Syscall

19

Cost of Virtualization

¢ 10°- EEE Linux
[v) . Y libdbos
Bao, = T .
=
£ 2
@
\\ \te
,{\]_Ca WY
em? ore? ©
Syscall
8GB Mem., 4GB Data YCSB C
47726.902K 8.730k
G
c 4OM -
2
=
(%)
B 20M-
c 1%
[
S
=
LeanStore +EIevated 19

Privilege

Cost of Virtualization

$ 105: B Linux
o - B libdbos
s |

£ o |
o

ed\ ead D\N (\’V-e

\
B e kCache elC ad‘
%

(e p\N
Syscall
8GB Mem., 4GB Data YCSB C 8GB Mem 16GB Data, YCSB C
" 47726.902K | 8.730k " 490.4
S~ ~~
g 40M - 2 400K -
5 5
- -
(@) ()
© 20M - & 200K -
c 1% c 1%
S S
= =
LeanStore +EIevated LeanStore +EIevated 19

Privilege Privilege

Numerous Possibilities

« Virtual Memory
« “Perfect” virtual-memory-assisted buffer manager
« Faster memory-rewiring for DBMS query processing and indexing
« Faster memory allocation
« Scheduling
« Robust lightweight task scheduling with preemption
« Transaction-priority-aware lightweight task scheduling
« Hypervisor Interface

« DBMS-assisted memory ballooning
20

Compatible with Modern Linux Data-Path Interfaces

Privileged DB Process
VM Subsys. | [Scheduling

: Virtualized Hardware ! ring I — /@) DPDK

interface

Host Kernel eBPFXDP |/ Hypervisor

Hardware

Conclusions

e With privileged kernel-bypass, we can address the mismatch
problem while

e Mminimizing impact on kernel security and stability
e providing complete design freedom to DBMS

e preserving ecosystem

e DBMS deserves to be to privileged!

22

