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DBMS Reimplements a lot of OS Features

• File/Storage caching
• Snapshotting
• User-space task scheduling and I/O scheduling
• But DBMS, being unprivileged, does not have powers that OS has 
• Page Table, MMU 
• Hardware interrupts 
• TLB flush instructions 
• Only exposed through slow POSIX interfaces (mmap, madvise, signals)
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How to allow DBMS complete freedom 
to specialize subsystems while 
minimizing impact on security, eco-
system, and compatibility ?
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Making DB Process Privileged with Virtualization
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Virtualized Process

VM Subsys. Scheduling

Virtualized Hardware: MMU, Page Table, Interrupt..

Guest  
Kernel Space

Syscall as hypercall

[1] Belay, Adam, et al. "Dune: Safe user-level access to privileged {CPU} features." OSDI 12. 2012.
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Guest  
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• Selectively specialize security-
sensitive subsystems for DBMS 
to avoid POSIX

• Hypervisor-based isolation for 
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Privileged Kernel-Bypass vs. Kernel-Bypass for DBMS
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This paper

• Instantaneous snapshotting.  
• “Perfect” virtual-memory-assisted buffer manager [see paper]
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Linux fork Bottleneck Analysis

• Linux kernel maintains a per-page reference count for safe page 
reclamation – a fundamental design decision to support shared-memory, 
page cache, memory-mapped files …
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Fast Snapshotting with Privileged Kernel Bypass

• We can make many simplifying assumptions 
• Specialize a simple VM/snapshotting system in the privileged DB process 
• No reference counting for physical pages - DB is the only user 
• No support for shared-memory, page cache, memory-mapped files… 
• No nested snapshot - Redis/KeyDB/Hyper use cases 

• Challenge: how to safely reclaim physical pages without reference count?
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Safely Reclaiming Physical Pages with Timestamp

• Lifecycle of page/snapshot tracked with timestamps - akin to epoch-based reclamation 
• A page is reclaimed when there are no references from any page tables. 

• No overlap between the lifetime of active page tables and physical page 
• Pages are periodically examined for garbage collection in batches
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Instant Snapshotting via Pre-Creation

• Asynchronously maintain a set of ready-to-go snapshot page tables 

• Completely hide the copy latency, making the snapshot creation appear 

instant
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Implementation

• The snapshot mechanism is implemented (~1K LOC) in a guest kernel called 
libdbos on top of Dune hypervisor 
• Linux virtual memory subsystem 110K LOC 

• Physical memory backing and system call proxy are done by the hypervisor 
• Evaluated on Redis by replacing fork with this snapshot mechanism 
• Checkpoint process runs in a thread
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Microbenchmark

• ~20x reduction in snapshot latency  
• Snapshot 128GB memory in 40ms without parallelization 

• Async copy completely hides fork latency if snapshot frequency > page 
table copy time
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Tail Latency of Redis SET Query during Checkpoint
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Cost of Virtualization
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Numerous Possibilities

• Virtual Memory 
• “Perfect” virtual-memory-assisted buffer manager 
• Faster memory-rewiring for DBMS query processing and indexing 
• Faster memory allocation 
• … 

• Scheduling 
• Robust lightweight task scheduling with preemption 
• Transaction-priority-aware lightweight task scheduling 
• … 

• Hypervisor Interface 
• DBMS-assisted memory ballooning
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Compatible with Modern Linux Data-Path Interfaces
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Conclusions

● With privileged kernel-bypass, we can address the mismatch 
problem while 
● minimizing impact on kernel security and stability 
● providing complete design freedom to DBMS 
● preserving ecosystem 

● DBMS deserves to be to privileged!
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