
Practical DB-OS Co-Design with
Privileged Kernel-Bypass

1

Xinjing Zhou, Viktor Leis, Jinming Hu, Xiangyao Yu, Michael Stonebraker

MIT CSAIL, TUM, DolphinDB Inc, UW-Madison, MIT CSAIL

DB-OS Interface Mismatch

2

Performance
Hardware control

Security
Multiplexes hardware
Resource efficiency

PO
SIX

DBMS Reimplements a lot of OS Features

3

DBMS Reimplements a lot of OS Features

• File/Storage caching

3

DBMS Reimplements a lot of OS Features

• File/Storage caching
• Snapshotting

3

DBMS Reimplements a lot of OS Features

• File/Storage caching
• Snapshotting
• User-space task scheduling and I/O scheduling

3

DBMS Reimplements a lot of OS Features

• File/Storage caching
• Snapshotting
• User-space task scheduling and I/O scheduling
• But DBMS, being unprivileged, does not have powers that OS has
• Page Table, MMU
• Hardware interrupts
• TLB flush instructions
• Only exposed through slow POSIX interfaces (mmap, madvise, signals)

3

4

4

4

4

4

4

4

4

Case Study: Virtual Memory Snapshotting

5

Case Study: Virtual Memory Snapshotting

• Redis uses fork to save process memory as checkpoints for persistence

5

Case Study: Virtual Memory Snapshotting

• Redis uses fork to save process memory as checkpoints for persistence
• Hyper[Kemper et al, ICDE’11] uses fork to run a OLAP queries on a OLTP database
• Hyper gave up on fork because fork is slow and hard to control

5

Case Study: Virtual Memory Snapshotting

• Redis uses fork to save process memory as checkpoints for persistence
• Hyper[Kemper et al, ICDE’11] uses fork to run a OLAP queries on a OLTP database
• Hyper gave up on fork because fork is slow and hard to control

• fork is blocking and requires threads to be paused to get a consistent
snapshot

5

Case Study: Virtual Memory Snapshotting

• Redis uses fork to save process memory as checkpoints for persistence
• Hyper[Kemper et al, ICDE’11] uses fork to run a OLAP queries on a OLTP database
• Hyper gave up on fork because fork is slow and hard to control

• fork is blocking and requires threads to be paused to get a consistent
snapshot

5

Redis p100 Query Latency during Checkpointing

Co-Design Paradigms for this Problem

6

Customized Linux Kernel
- Security
- Maintainability

DB

 Linux

Hardware

Module

Co-Design Paradigms for this Problem

6

Customized Linux Kernel
- Security
- Maintainability

DB

 Linux

Hardware

Module

Kernel Bypass
- No direct control on
MMU & Page Table

- Limited Design Space

DB

 Linux

Hardware

Co-Design Paradigms for this Problem

6

Customized Linux Kernel
- Security
- Maintainability

DB

 Linux

Hardware

Module

DB on
Unikernel

Hypervisor/Hardware

DB-Unikernel
- All-or-nothing
- Throwing
baby(ecosystem) out
with bathwater(POSIX)

Kernel Bypass
- No direct control on
MMU & Page Table

- Limited Design Space

DB

 Linux

Hardware

How to allow DBMS complete freedom
to specialize subsystems while
minimizing impact on security, eco-
system, and compatibility ?

7

Making DB Process Privileged with Virtualization

8

Privileged DB Process

Hardware

Privileged Kernel Bypass

 Host Kernel Hypervisor[1]

Virtualized Process

VM Subsys. Scheduling

Virtualized Hardware: MMU, Page Table, Interrupt..

Guest
Kernel Space

Syscall as hypercall

[1] Belay, Adam, et al. "Dune: Safe user-level access to privileged {CPU} features." OSDI 12. 2012.

…

Making DB Process Privileged with Virtualization

8

Privileged DB Process

Hardware

Privileged Kernel Bypass

 Host Kernel Hypervisor[1]

Virtualized Process

VM Subsys. Scheduling

Virtualized Hardware: MMU, Page Table, Interrupt..

Guest
Kernel Space

• Selectively specialize security-
sensitive subsystems for DBMS
to avoid POSIX

Syscall as hypercall

[1] Belay, Adam, et al. "Dune: Safe user-level access to privileged {CPU} features." OSDI 12. 2012.

…

Making DB Process Privileged with Virtualization

8

Privileged DB Process

Hardware

Privileged Kernel Bypass

 Host Kernel Hypervisor[1]

Virtualized Process

VM Subsys. Scheduling

Virtualized Hardware: MMU, Page Table, Interrupt..

Guest
Kernel Space

• Selectively specialize security-
sensitive subsystems for DBMS
to avoid POSIX

• Hypervisor-based isolation for
security

Syscall as hypercall

[1] Belay, Adam, et al. "Dune: Safe user-level access to privileged {CPU} features." OSDI 12. 2012.

…

Making DB Process Privileged with Virtualization

8

Privileged DB Process

Hardware

Privileged Kernel Bypass

 Host Kernel Hypervisor[1]

Virtualized Process

VM Subsys. Scheduling

Virtualized Hardware: MMU, Page Table, Interrupt..

Guest
Kernel Space

• Selectively specialize security-
sensitive subsystems for DBMS
to avoid POSIX

• Hypervisor-based isolation for
security

• Reuse host kernel functionality
and its ecosystem

Syscall as hypercall

[1] Belay, Adam, et al. "Dune: Safe user-level access to privileged {CPU} features." OSDI 12. 2012.

…

Making DB Process Privileged with Virtualization

8

Privileged DB Process

Hardware

Privileged Kernel Bypass

 Host Kernel Hypervisor[1]

Virtualized Process

VM Subsys. Scheduling

Virtualized Hardware: MMU, Page Table, Interrupt..

Guest
Kernel Space

• Selectively specialize security-
sensitive subsystems for DBMS
to avoid POSIX

• Hypervisor-based isolation for
security

• Reuse host kernel functionality
and its ecosystem

• Not throwing the baby out with
bathwater

Syscall as hypercall

[1] Belay, Adam, et al. "Dune: Safe user-level access to privileged {CPU} features." OSDI 12. 2012.

…

Privileged Kernel-Bypass vs. Kernel-Bypass for DBMS

9

Kernel Bypass Privileged Kernel Bypass

DBMS runs in User Space Guest Kernel Space

Specializes Network/Storage Virtual Memory/Scheduler/Interrupt
/Network/Storage

This paper

• Instantaneous snapshotting.
• “Perfect” virtual-memory-assisted buffer manager [see paper]

10

Linux fork Bottleneck Analysis

11

Linux fork Bottleneck Analysis

11

Just copy page table

Linux fork Bottleneck Analysis

• Linux kernel maintains a per-page reference count for safe page
reclamation – a fundamental design decision to support shared-memory,
page cache, memory-mapped files …

12

P1 P2 P3 P4Physical Memory

Virtual Memory

Page Table

1 1 1 1Per-page Ref. Count

Linux fork Bottleneck Analysis

• Linux kernel maintains a per-page reference count for safe page
reclamation – a fundamental design decision to support shared-memory,
page cache, memory-mapped files …

12

P1 P2 P3 P4Physical Memory

Virtual Memory

Page Table Page Tablecopy

1 1 1 1Per-page Ref. Count

Linux fork Bottleneck Analysis

• Linux kernel maintains a per-page reference count for safe page
reclamation – a fundamental design decision to support shared-memory,
page cache, memory-mapped files …

12

P1 P2 P3 P4Physical Memory

Virtual Memory

Page Table Page Tablecopy

1 1 1 1Per-page Ref. Count

Update per-page
reference count

Linux fork Bottleneck Analysis

• Linux kernel maintains a per-page reference count for safe page
reclamation – a fundamental design decision to support shared-memory,
page cache, memory-mapped files …

12

P1 P2 P3 P4Physical Memory

Virtual Memory

Page Table Page Tablecopy

1 1 1 1Per-page Ref. Count

Update per-page
reference count

2

Linux fork Bottleneck Analysis

• Linux kernel maintains a per-page reference count for safe page
reclamation – a fundamental design decision to support shared-memory,
page cache, memory-mapped files …

12

P1 P2 P3 P4Physical Memory

Virtual Memory

Page Table Page Tablecopy

1 1 1 1Per-page Ref. Count

Update per-page
reference count

2 2

Linux fork Bottleneck Analysis

• Linux kernel maintains a per-page reference count for safe page
reclamation – a fundamental design decision to support shared-memory,
page cache, memory-mapped files …

12

P1 P2 P3 P4Physical Memory

Virtual Memory

Page Table Page Tablecopy

1 1 1 1Per-page Ref. Count

Update per-page
reference count

2 2 2

Linux fork Bottleneck Analysis

• Linux kernel maintains a per-page reference count for safe page
reclamation – a fundamental design decision to support shared-memory,
page cache, memory-mapped files …

12

P1 P2 P3 P4Physical Memory

Virtual Memory

Page Table Page Tablecopy

1 1 1 1Per-page Ref. Count

Update per-page
reference count

~90% CPU cycles due
to cache misses and
random accesses

2 2 2

Fast Snapshotting with Privileged Kernel Bypass

• We can make many simplifying assumptions
• Specialize a simple VM/snapshotting system in the privileged DB process
• No reference counting for physical pages - DB is the only user
• No support for shared-memory, page cache, memory-mapped files…
• No nested snapshot - Redis/KeyDB/Hyper use cases

• Challenge: how to safely reclaim physical pages without reference count?

13

Safely Reclaiming Physical Pages with Timestamp

• Lifecycle of page/snapshot tracked with timestamps - akin to epoch-based reclamation
• A page is reclaimed when there are no references from any page tables.

• No overlap between the lifetime of active page tables and physical page
• Pages are periodically examined for garbage collection in batches

14Time
2 4 5 9 2010 17

Main Page Table

Safely Reclaiming Physical Pages with Timestamp

• Lifecycle of page/snapshot tracked with timestamps - akin to epoch-based reclamation
• A page is reclaimed when there are no references from any page tables.

• No overlap between the lifetime of active page tables and physical page
• Pages are periodically examined for garbage collection in batches

14Time

Physical Page P

2 4 5 9 2010 17

Main Page Table

S2

 S1 Page Table

Safely Reclaiming Physical Pages with Timestamp

• Lifecycle of page/snapshot tracked with timestamps - akin to epoch-based reclamation
• A page is reclaimed when there are no references from any page tables.

• No overlap between the lifetime of active page tables and physical page
• Pages are periodically examined for garbage collection in batches

14Time

Physical Page P

2 4 5 9 2010 17

Main Page Table

S2

 S1 Page Table

Safely Reclaiming Physical Pages with Timestamp

• Lifecycle of page/snapshot tracked with timestamps - akin to epoch-based reclamation
• A page is reclaimed when there are no references from any page tables.

• No overlap between the lifetime of active page tables and physical page
• Pages are periodically examined for garbage collection in batches

14Time

Physical Page P

2 4 5 9 2010 17

Main Page Table

Grace Period

S2

 S1 Page Table

Safely Reclaiming Physical Pages with Timestamp

• Lifecycle of page/snapshot tracked with timestamps - akin to epoch-based reclamation
• A page is reclaimed when there are no references from any page tables.

• No overlap between the lifetime of active page tables and physical page
• Pages are periodically examined for garbage collection in batches

14Time

Physical Page P

2 4 5 9 2010 17

Main Page Table

Grace Period

S2

 S1 Page Table

Safely Reclaiming Physical Pages with Timestamp

• Lifecycle of page/snapshot tracked with timestamps - akin to epoch-based reclamation
• A page is reclaimed when there are no references from any page tables.

• No overlap between the lifetime of active page tables and physical page
• Pages are periodically examined for garbage collection in batches

14Time

Physical Page P

P is unlinked.

2 4 5 9 2010 17

Main Page Table

Grace Period

S2

 S1 Page Table

Safely Reclaiming Physical Pages with Timestamp

• Lifecycle of page/snapshot tracked with timestamps - akin to epoch-based reclamation
• A page is reclaimed when there are no references from any page tables.

• No overlap between the lifetime of active page tables and physical page
• Pages are periodically examined for garbage collection in batches

14Time

Physical Page P P is reclaimed.

P is unlinked.

2 4 5 9 2010 17

Main Page Table

Instant Snapshotting via Pre-Creation

• Asynchronously maintain a set of ready-to-go snapshot page tables

• Completely hide the copy latency, making the snapshot creation appear

instant

15

Ready
Snapshot

Page Table

Snapshot
Page Table

Synchronize
Changes

Snapshot Request

Instant Snapshotting via Pre-Creation

• Asynchronously maintain a set of ready-to-go snapshot page tables

• Completely hide the copy latency, making the snapshot creation appear

instant

15

Ready
Snapshot

Page Table Snapshot
Page Table

Synchronize
Changes

Snapshot Request

Implementation

• The snapshot mechanism is implemented (~1K LOC) in a guest kernel called
libdbos on top of Dune hypervisor
• Linux virtual memory subsystem 110K LOC

• Physical memory backing and system call proxy are done by the hypervisor
• Evaluated on Redis by replacing fork with this snapshot mechanism
• Checkpoint process runs in a thread

16

Redis

libdbos

Linux KernelHost Kernel Space

Dune Hypervisor

Proxy syscall with hypercall

Privileged DB Process

Microbenchmark

• ~20x reduction in snapshot latency
• Snapshot 128GB memory in 40ms without parallelization

• Async copy completely hides fork latency if snapshot frequency > page
table copy time

17

Tail Latency of Redis SET Query during Checkpoint

18

Cost of Virtualization

19

Cost of Virtualization

19

Cost of Virtualization

19

Numerous Possibilities

• Virtual Memory
• “Perfect” virtual-memory-assisted buffer manager
• Faster memory-rewiring for DBMS query processing and indexing
• Faster memory allocation
• …

• Scheduling
• Robust lightweight task scheduling with preemption
• Transaction-priority-aware lightweight task scheduling
• …

• Hypervisor Interface
• DBMS-assisted memory ballooning

20

Compatible with Modern Linux Data-Path Interfaces

21

Privileged DB Process

Hardware

 Host Kernel Hypervisor

Virtualized Hardware ring
interface

VM Subsys. Scheduling

XDP

Conclusions

● With privileged kernel-bypass, we can address the mismatch
problem while
● minimizing impact on kernel security and stability
● providing complete design freedom to DBMS
● preserving ecosystem

● DBMS deserves to be to privileged!

22Paper

