OLTP Through the Looking
Glass 16 Years Later:

Communication Is the New Bottleneck

Xinjing Zhou, Viktor Leis, Xiangyao Yu, Michael Stonebraker
MIT CSAIL, TUM, UW-Madison, MIT CSAIL

l - Massachusetts
Institute of
Technology

OLTP Looking Glass Back in 2008

e A performance study of a disk-based OLTP system - Shore
e Bottlenecks were spread across various components when data fits in memory

CPU Cycles (%)
Useful Work

B-tree Ineff.

Recovery ‘ TPC-Cd
new-oraer

Buffer Pool
16.3

Latching

Many New OLTP Engines since then

[i]-Store YOLTDB Y leanstore

Silo 4-{ HyPer

Hekaton

c
o

Instructions per Transact

CPU

(8 UMBRA

1.8 M4

1.6 M+ . logging
1.4 M . locking
1.2 M+ . latching

1 M- . buffer manager
- " | Bitreeineft.
0.6 M- useful work
0.4 M -
0.2 M-

0 M-+

Shore LeanStore

TPC-C
new-order

Problems of Previous Research

e Benchmarks ignore OS stacks and communication
e Most assume stored procedure as the core technigque to reduce network

overhead.
e The reality [1-2]: many apps prefer interactive transactions due to better

software engineering practices

DBMS Core

Stored
Procedure

[1] Pavlo, Andrew. "What are we doing with our lives? Nobody cares about our concurrency control research.” SIGMOD 2017.
[2] Hu, Gansen, et al. "WeBridge: Synthesizing Stored Procedures for Large-Scale Real-World Web Applications.” SIGMOD 2024.

Security of Stored Procedures

e Procedures run in the same address space of DBMS process for performance
o written in various languages: PL/SQL, C/C++, Java, Python

e Malicious/errant procedures could read unauthorized data or crash DBMS
e DBMSs are becoming more multi-tenant as people move to the cloud
e This applies to other extensibility mechanisms: UDF and extensions

Isolated Extensions

Domain cost ?
Stored <

Procedure

DBMS Process

A\ 4

UDF

OLTP Looking Glass 2.0

Consider OS network stacks

Consider both stored procedures and interactive transactions
Consider procedure isolation

Assume previous bottlenecks were solved after more than a decade of
research - We use VolItDB as the testbed.

2 Google cloud instances with 10Gbps NIC and 16-core 2.3Ghz CPU
e Increase the load until the server is CPU-bound

VoltDB Architecture

Partitic_)pgdy Partitioned
. X_/QI;FP’Engine 1 OLTP Engine N
Transaction _,_,_—“" §5}
Processi ng TR --Stored Procedure Stored Procedure
Executor 1 - Executor N

Network -~
Ingress <.

~

Network
Egress

RN TCP/IP Stack -7

\\\A -
. NiC Driver & Interrupt ‘

Ingress T ¢ Egress Kernel

No-Isolation — Server-side CPU-time Breakdown,
Communication iIs the bottleneck

I Network Receive Request Queuing B Procedure Execution [Response Queuing
[Socket Read [Isolation Overhead [Query Execution BN Network Send
113 10001
50 -
Network 1001 ge:(\elvsc;rk
Egress 9 800
40 T 80 .
- 0 0 i
El 30- Transaction 2 Transaction 5 600
1) Processing GE) 60 1 Processing qE)
£ £ £
F 204 = 40 = 400+
2) 2
o o o
o 101 Network v 20+ Network U 200
Ingress Ingress
0- 0- 0-
W\ e uee We
d,ptoce ne a¢ d,p(oced -\“teVad 3-9t©
Transaction Model Transaction Model Transaction Model

YCSB-C Voter TPC-C

Isolating Procedure

No
Isolation

Process
Isolation

Container
Isolation

VM
Isolation

Client-server
Isolation

Stored Procedure
Process

App with interactive
transactions

Stored Procedure
Process

Stored Procedure
Process in Container

DBMS Process

[1pc

[1pc

Guest OS Kernel

Stored
Procedure

OS Kernel

DBMS Process

DBMS Process

IIPC

OS Kernel

OS Kernel

OS Kernel

DBMS Process

I Network

OS Kernel

DBMS Process

OS Kernel

|Isolated Stored Procedure Execution,
Communication for Isolation is the bottleneck

B Network Receive Request Queuing Il Procedure Execution Response Queuing
Socket Read Isolation Overhead Query Execution B Network Send
VM Client-Server
Isolation Isolation
Process Container 3250
Isolation Isolation
12001 No
10004 Isolation
921
—_ 12.8°/
S 800- :
() 641
I [
= 400 T
v | -7
200 1 —l78
|
e P el Nl wWe
ot X o W
o P e

TPC-C Isolation & IPC Mechanisms

|Isolated Stored Procedure Execution,
Communication for Isolation is the bottleneck

B Network Receive Request Queuing Il Procedure Execution Response Queuing
Socket Read Isolation Overhead Query Execution B Network Send
VM Client-Server
Isolation Isolation
. 3250
Process Container
12001 No Isolation Isolation
Isolation
1000 1
921
) 12.8°/
S 800+ :
() 641
|_
> 4001 — N
O _ 296 _ _297 = 14.5% |
200 178 _
]] |
18.4%
- , , , , N -
e P e el el Nl o wWe
o X) oC oC \ o)
®ee Xl o™ exef®

TPC-C Isolation & IPC Mechanisms

Wish #1: Towards Usable Kernel Bypass

e DPDK + User space TPC/IP stack (F-Stack)

o Reduces kernel network stack overhead of VoltDB by 85%
e Only two DBMS vendors support kernel-bypass: Yellowbrick and

ScyllaDB
e Three Problems
o Interface-Mismatch: DPDK is a layer-2 stack — no transport/routing layer support

o Design Limitation: A DPDK app requires complete control of a NIC
m Linux tooling are not available on DPDK-managed NIC, making debugging

and deployment hard.
o Engineering and Maintenance: User-space TCP/IP stacks often require DBMS

to rewrite their network layer code due to API differences.

Wish #2:. More Exploration in the Trade-off Space

Security

Interactive Transaction

Is there a better approach that
attend to all three?

Interactive Transaction

Debuggability
Testing
Language Flexibility =zse-of-Use Performance
DBMS-agnostic

Version-Control

Wish #2:. More Exploration in the Trade-off Space

Security

Interactive Transaction

Process-Isolated
Stored Procedure

Interactive Transaction

=ase-of-Use Performance

Wish #2:. More Exploration in the Trade-off Space

Security

Interactive Transaction

Process-Isolated
Stored Procedure

Interactive Transaction

) DBOS Stored Procedure
zase-of-Use Synthesis [3]
[3] https://www.dbos.dev/blog/stored-procedures-good-bad-elegant

Performance

Conclusion

e \We should focus more on intra-DBMS communication and OS network stack.

e \We need more usable and efficient kernel bypass abstractions to make larger
impact on DBMS.

e \We should revisit the debate about stored-procedure and interactive
transaction, factoring in security and usability.

CIDR 2025 Preprint

	Slide 1: OLTP Through the Looking Glass 16 Years Later: Communication is the New Bottleneck
	Slide 2: OLTP Looking Glass Back in 2008
	Slide 3: Many New OLTP Engines since then
	Slide 4: Problems of Previous Research
	Slide 5: Security of Stored Procedures
	Slide 6: OLTP Looking Glass 2.0
	Slide 7: VoltDB Architecture
	Slide 8: No-Isolation – Server-side CPU-time Breakdown, Communication is the bottleneck
	Slide 9: Isolating Procedure
	Slide 10: Isolated Stored Procedure Execution, Communication for Isolation is the bottleneck
	Slide 11: Isolated Stored Procedure Execution, Communication for Isolation is the bottleneck
	Slide 12: Wish #1: Towards Usable Kernel Bypass
	Slide 13: Wish #2: More Exploration in the Trade-off Space
	Slide 14: Wish #2: More Exploration in the Trade-off Space
	Slide 15: Wish #2: More Exploration in the Trade-off Space
	Slide 16: Conclusion

