
OLTP Through the Looking

Glass 16 Years Later:
Communication is the New Bottleneck

Xinjing Zhou, Viktor Leis, Xiangyao Yu, Michael Stonebraker

MIT CSAIL, TUM, UW-Madison, MIT CSAIL

OLTP Looking Glass Back in 2008

● A performance study of a disk-based OLTP system - Shore

● Bottlenecks were spread across various components when data fits in memory

TPC-C

new-order

6.8

34.6

14.2

16.3

11.9

16.2

CPU Cycles (%)
Useful Work

Buffer Pool

Latching

Locking

Recovery

B-tree Ineff.

Many New OLTP Engines since then

Silo

Hekaton …….

TPC-C

new-order

Problems of Previous Research

● Benchmarks ignore OS stacks and communication

● Most assume stored procedure as the core technique to reduce network

overhead.

● The reality [1-2]: many apps prefer interactive transactions due to better

software engineering practices

OS Stack

App

OS Stack
Network

DBMS Core

Stored

Procedure

[1] Pavlo, Andrew. "What are we doing with our lives? Nobody cares about our concurrency control research." SIGMOD 2017.

[2] Hu, Gansen, et al. "WeBridge: Synthesizing Stored Procedures for Large-Scale Real-World Web Applications." SIGMOD 2024.

● Procedures run in the same address space of DBMS process for performance
○ written in various languages: PL/SQL, C/C++, Java, Python

● Malicious/errant procedures could read unauthorized data or crash DBMS

● DBMSs are becoming more multi-tenant as people move to the cloud

● This applies to other extensibility mechanisms: UDF and extensions

Security of Stored Procedures

DBMS ProcessStored

Procedure

Extensions

UDF

cost？

Isolated

Domain

OLTP Looking Glass 2.0

● Consider OS network stacks

● Consider both stored procedures and interactive transactions

● Consider procedure isolation

● Assume previous bottlenecks were solved after more than a decade of

research - We use VoltDB as the testbed.

● 2 Google cloud instances with 10Gbps NIC and 16-core 2.3Ghz CPU

● Increase the load until the server is CPU-bound

VoltDB Architecture

Network Thread 1 Network Thread M

Partitioned

OLTP Engine 1

...

...

Kernel

TCP/IP Stack

NiC Driver & Interrupt

EgressIngress

1

2

3 7

8

6

Stored Procedure

Executor 1

5

Partitioned

OLTP Engine N

Stored Procedure

Executor N4

Userspace

Network

Ingress
Network

Egress

Transaction

Processing

No-Isolation – Server-side CPU-time Breakdown,

Communication is the bottleneck

YCSB-C Voter TPC-C

C
P
U

C
P
U

C
P
U

OS Kernel

Isolating Procedure

DBMS Process
Stored

Procedure

Stored Procedure

Process

Stored Procedure
Process in Container

Guest OS Kernel

DBMS Process DBMS Process DBMS Process

Stored Procedure

Process

DBMS Process

App with interactive
transactions

IPC IPC Network

OS Kernel OS Kernel OS Kernel OS Kernel OS Kernel

No

Isolation

Client-server

Isolation

IPC

Process

Isolation

Container

Isolation

VM

Isolation

Isolated Stored Procedure Execution,

Communication for Isolation is the bottleneck

TPC-C

C
P
U

Process

Isolation

Container

Isolation

VM

Isolation

No

Isolation

Client-Server

Isolation

Isolated Stored Procedure Execution,

Communication for Isolation is the bottleneck

TPC-C

C
P
U

Process

Isolation

Container

Isolation

VM

Isolation

No

Isolation

Client-Server

Isolation

Wish #1: Towards Usable Kernel Bypass

● DPDK + User space TPC/IP stack (F-Stack)
○ Reduces kernel network stack overhead of VoltDB by 85%

● Only two DBMS vendors support kernel-bypass: Yellowbrick and

ScyllaDB

● Three Problems

○ Interface-Mismatch: DPDK is a layer-2 stack – no transport/routing layer support

○ Design Limitation: A DPDK app requires complete control of a NIC

■ Linux tooling are not available on DPDK-managed NIC, making debugging

and deployment hard.

○ Engineering and Maintenance: User-space TCP/IP stacks often require DBMS

to rewrite their network layer code due to API differences.

0

1

2

3

4

5

Securit y

PerformanceEase-of-Use

Wish #2: More Exploration in the Trade-off Space

Debuggability

Testing
Language Flexibility

DBMS-agnostic

Version-Control

Is there a better approach that

attend to all three?

Interactive Transaction

Interactive Transaction

Wish #2: More Exploration in the Trade-off Space

0

1

2

3

4

5

Securit y

PerformanceEase-of-Use

Interactive Transaction

Interactive Transaction

Process-Isolated

Stored Procedure

Wish #2: More Exploration in the Trade-off Space

0

1

2

3

4

5

Securit y

PerformanceEase-of-Use

Interactive Transaction

Interactive Transaction

Process-Isolated

Stored Procedure

DBOS Stored Procedure

Synthesis [3]
[3] https://www.dbos.dev/blog/stored-procedures-good-bad-elegant

Conclusion

● We should focus more on intra-DBMS communication and OS network stack.

● We need more usable and efficient kernel bypass abstractions to make larger

impact on DBMS.

● We should revisit the debate about stored-procedure and interactive

transaction, factoring in security and usability.

CIDR 2025 Preprint

	Slide 1: OLTP Through the Looking Glass 16 Years Later: Communication is the New Bottleneck
	Slide 2: OLTP Looking Glass Back in 2008
	Slide 3: Many New OLTP Engines since then
	Slide 4: Problems of Previous Research
	Slide 5: Security of Stored Procedures
	Slide 6: OLTP Looking Glass 2.0
	Slide 7: VoltDB Architecture
	Slide 8: No-Isolation – Server-side CPU-time Breakdown, Communication is the bottleneck
	Slide 9: Isolating Procedure
	Slide 10: Isolated Stored Procedure Execution, Communication for Isolation is the bottleneck
	Slide 11: Isolated Stored Procedure Execution, Communication for Isolation is the bottleneck
	Slide 12: Wish #1: Towards Usable Kernel Bypass
	Slide 13: Wish #2: More Exploration in the Trade-off Space
	Slide 14: Wish #2: More Exploration in the Trade-off Space
	Slide 15: Wish #2: More Exploration in the Trade-off Space
	Slide 16: Conclusion

