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OLTP Looking Glass Back in 2008

● A performance study of a disk-based OLTP system - Shore

● Bottlenecks were spread across various components when data fits in memory
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Many New OLTP Engines since then
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Problems of Previous Research

● Benchmarks ignore OS stacks and communication

● Most assume stored procedure as the core technique to reduce network 

overhead.

● The reality [1-2]: many apps prefer interactive transactions due to better 

software engineering practices 
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[1] Pavlo, Andrew. "What are we doing with our lives? Nobody cares about our concurrency control research." SIGMOD 2017.

[2] Hu, Gansen, et al. "WeBridge: Synthesizing Stored Procedures for Large-Scale Real-World Web Applications." SIGMOD 2024.



● Procedures run in the same address space of DBMS process for performance
○ written in various languages: PL/SQL, C/C++, Java, Python

● Malicious/errant procedures could read unauthorized data or crash DBMS

● DBMSs are becoming more multi-tenant as people move to the cloud

● This applies to other extensibility mechanisms: UDF and extensions
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OLTP Looking Glass 2.0

● Consider OS network stacks

● Consider both stored procedures and interactive transactions

● Consider procedure isolation

● Assume previous bottlenecks were solved after more than a decade of 

research - We use VoltDB as the testbed.

● 2 Google cloud instances with 10Gbps NIC and 16-core 2.3Ghz CPU

● Increase the load until the server is CPU-bound



VoltDB Architecture
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No-Isolation – Server-side CPU-time Breakdown, 

Communication is the bottleneck
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Isolated Stored Procedure Execution,

Communication for Isolation is the bottleneck
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Isolated Stored Procedure Execution,

Communication for Isolation is the bottleneck
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Wish #1: Towards Usable Kernel Bypass

● DPDK + User space TPC/IP stack (F-Stack)
○ Reduces kernel network stack overhead of VoltDB by 85%

● Only two DBMS vendors support kernel-bypass: Yellowbrick and 

ScyllaDB

● Three Problems

○ Interface-Mismatch: DPDK is a layer-2 stack – no transport/routing layer support

○ Design Limitation: A DPDK app requires complete control of a NIC

■ Linux tooling are not available on DPDK-managed NIC, making debugging 

and deployment hard.

○ Engineering and Maintenance: User-space TCP/IP stacks often require DBMS 

to rewrite their network layer code due to API differences.
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Wish #2: More Exploration in the Trade-off Space
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Wish #2: More Exploration in the Trade-off Space
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[3] https://www.dbos.dev/blog/stored-procedures-good-bad-elegant



Conclusion

● We should focus more on intra-DBMS communication and OS network stack. 

● We need more usable and efficient kernel bypass abstractions to make larger 

impact on DBMS.

● We should revisit the debate about stored-procedure and interactive 

transaction, factoring in security and usability. 
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