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OLTP Looking Glass Back in 2008

e A performance study of a disk-based OLTP system - Shore
e Bottlenecks were spread across various components when data fits in memory
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Many New OLTP Engines since then
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Problems of Previous Research

e Benchmarks ignore OS stacks and communication
e Most assume stored procedure as the core technigque to reduce network

overhead.
e The reality [1-2]: many apps prefer interactive transactions due to better

software engineering practices
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[1] Pavlo, Andrew. "What are we doing with our lives? Nobody cares about our concurrency control research.” SIGMOD 2017.
[2] Hu, Gansen, et al. "WeBridge: Synthesizing Stored Procedures for Large-Scale Real-World Web Applications.” SIGMOD 2024.



Security of Stored Procedures

e Procedures run in the same address space of DBMS process for performance
o written in various languages: PL/SQL, C/C++, Java, Python

e Malicious/errant procedures could read unauthorized data or crash DBMS
e DBMSs are becoming more multi-tenant as people move to the cloud
e This applies to other extensibility mechanisms: UDF and extensions
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OLTP Looking Glass 2.0

Consider OS network stacks

Consider both stored procedures and interactive transactions
Consider procedure isolation

Assume previous bottlenecks were solved after more than a decade of
research - We use VolItDB as the testbed.

2 Google cloud instances with 10Gbps NIC and 16-core 2.3Ghz CPU
e Increase the load until the server is CPU-bound



VoltDB Architecture
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No-Isolation — Server-side CPU-time Breakdown,
Communication iIs the bottleneck
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Isolating Procedure
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|Isolated Stored Procedure Execution,
Communication for Isolation is the bottleneck
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|Isolated Stored Procedure Execution,
Communication for Isolation is the bottleneck

B Network Receive Request Queuing Il Procedure Execution Response Queuing
Socket Read Isolation Overhead Query Execution B Network Send
VM Client-Server
Isolation Isolation
. 3250
Process Container
12001 No Isolation Isolation
Isolation
1000 1
921
) 12.8°/
S 800+ :
() 641
|_
> 4001 — N
O _ 296 _ _297 = 14.5% |
200 178 _
] ] |
18.4%
- , , , , N -
e P e el el Nl o wWe
o X ) oC oC \ o)
®ee Xl o™ exef®

TPC-C Isolation & IPC Mechanisms



Wish #1: Towards Usable Kernel Bypass

e DPDK + User space TPC/IP stack (F-Stack)

o Reduces kernel network stack overhead of VoltDB by 85%
e Only two DBMS vendors support kernel-bypass: Yellowbrick and

ScyllaDB
e Three Problems
o Interface-Mismatch: DPDK is a layer-2 stack — no transport/routing layer support

o Design Limitation: A DPDK app requires complete control of a NIC
m Linux tooling are not available on DPDK-managed NIC, making debugging

and deployment hard.
o Engineering and Maintenance: User-space TCP/IP stacks often require DBMS

to rewrite their network layer code due to API differences.



Wish #2:. More Exploration in the Trade-off Space

Security
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Is there a better approach that
attend to all three?
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Wish #2:. More Exploration in the Trade-off Space
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Wish #2:. More Exploration in the Trade-off Space
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Conclusion

e \We should focus more on intra-DBMS communication and OS network stack.

e \We need more usable and efficient kernel bypass abstractions to make larger
impact on DBMS.

e \We should revisit the debate about stored-procedure and interactive
transaction, factoring in security and usability.
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